APOSTOL 해석적 정수론 CHAP 2. 12 ~ 19

2017. 8. 7. 14:50수학 이론/정수론

1편 : http://drugstoreoftamref.tistory.com/15

Qkffl Qkffl dmdkdkdkdkdkd


D12. (Completely) Multiplicative Function


MF : f s.t. f(mn)=f(m)f(n) m,n s.t. gcd(m,n)=1f \text{ s.t. } f(mn)=f(m)f(n) \ \forall m,n \text{ s.t. }gcd(m,n)=1


CMF : f s.t. f(mn)=f(m)f(n) m,nf \text{ s.t. } f(mn)=f(m)f(n) \ \forall m,n


* 앞으로 MF들의 집합을 M\mathbb{M}으로, CMF들의 집합을 CM\mathbb{CM}으로 denote.


C12-1. fMf(1)=1f \in \mathbb{M} \Rightarrow f(1)=1


T13. fM f(k=1ωpkek)=k=1ωf(pkek)(1)f \in \mathbb{M} \Leftrightarrow f(\prod_{k=1}^{\omega} p_k^{e_k}) = \prod_{k=1}^{\omega} f(p_k^{e_k}) \cdots (1)

When  fM,fCMf(px)=f(p)x(2) \text{When } f \in \mathbb{M}, \\ f \in \mathbb{CM} \Leftrightarrow f(p^x)={f(p)}^x \cdots (2)


pf) Trivial.\text{Trivial.} \blacksquare


T14.

f,gMfgM f, g \in \mathbb{M} \Rightarrow f \ast g \in \mathbb{M}


pf)

let) m,nN s.t. gcd(m,n)=1 \text{let) } m,n \in \mathbb{N} \text{ s.t. } gcd(m,n)=1

(fg)(m)(fg)(n) (f \ast g)(m) \cdot (f \ast g)(n)

=(xmf(x)g(mx))(ynf(y)g(ny)) = \left( \sum_{x|m}f(x)g(\frac{m}{x}) \right) \cdot \left( \sum_{y|n}f(y)g(\frac{n}{y}) \right)

=xymnf(x)g(mx)f(y)g(ny)(gcd(x,y)=1)  = \sum_{xy|mn} f(x)g(\frac{m}{x})f(y)g(\frac{n}{y}) \quad (\because gcd(x,y)=1) 

=xymnf(x)f(y)g(mx)g(ny) = \sum_{xy|mn} f(x)f(y)g(\frac{m}{x})g(\frac{n}{y})

=zmnf(z)g(mnz) = \sum_{z|mn} f(z)g(\frac{mn}{z})

=(fg)(mn)  = (f \ast g)(mn) \ \blacksquare


cf) f,gCM⇏ fgCMf, g \in \mathbb{CM} \not{\Rightarrow} f \ast g \in \mathbb{CM}

ex) σ=uN CM\text{ex) } \sigma = u \ast N \notin \mathbb{CM}


T15. f,fgMgM f, f \ast g \in \mathbb{M} \Rightarrow g \in \mathbb{M}


proof by contradiction)

g(1)=1 (f(1)=(fg)(1)=1)g(1) = 1 \ (\because f(1)=(f \ast g)(1) = 1)

let) x be the minimal  value s.t. ax s.t. gcd(a,x/a)=1g(x)g(a)g(x/a)\text{let) x be the minimal  value s.t. } \exists a|x \text{ s.t. } gcd(a,x/a)=1 \wedge g(x)\neq g(a)g(x/a) 

(즉, MF의 성질이 성립하지 않는 최솟값 가정)


(fg)(x)=(fg)(a)(fg)(x/a).contradiction. (f \ast g)(x) = (f \ast g)(a) \cdot (f \ast g) (x/a). \text{contradiction.} \blacksquare


C15-1. fMf1Mf \in \mathbb{M} \Rightarrow f^{-1} \in \mathbb{M}

pf) f,I(=ff1) M.f, I(=f \ast f^{-1}) \in \mathbb{M}. \blacksquare


T16. When fM,fCMf1=μf \text{When } f \in \mathbb{M}, \\ f \in \mathbb{CM} \Leftrightarrow f^{-1} = \mu \cdot f


)\Rightarrow )

f(μf)(n) f\ast (\mu f) (n)

=dnf(d)μ(d)f(nd) = \sum_{d|n} f(d)\mu(d) f(\frac{n}{d})

=dnf(n)μ(d)(fCM) = \sum_{d|n} f(n)\mu(d) (\because f \in \mathbb{CM} )

=f(n)dnμ(d) = f(n)\cdot \sum_{d|n} \mu(d)

=f(n)I(n)=I(n)  = f(n)I(n) = I(n) \ \blacksquare


)\Leftarrow )

claim) f(pk)=f(p)f(pk1)\text{claim) } f(p^k) = f(p)f(p^{k-1}) (이후는 T13)

(ff1)(pk)=f(pk)+f(p)μ(p)f(pk1)=0 for k>0  (f \ast f^{-1})(p^k) = f(p^k) + f(p)\mu (p)f(p^{k-1}) = 0 \text{ for } \forall k>0  

f(pk)f(p)f(pk1)=0  \therefore f(p^k)-f(p)f(p^{k-1})=0 \ \blacksquare


E16-1. (Inversion of Euler Totient Function)

ϕ1=(μN)1{\phi}^{-1} = (\mu \ast N)^{-1}

=μ1N1 = \mu^{-1} \ast N^{-1}

=u(μN) (NCM) = u \ast (\mu N) \ (\because N \in \mathbb{CM})

=dndμ(d) = \sum_{d|n} d\mu(d)

=pn(1p)   = \prod_{p|n} (1-p) \ \blacksquare 


T17. (E16-1에서 의식의 흐름)

When fM,dnμ(d)f(d)=pn(1f(p)) \text{When } f \in \mathbb{M}, \\ \sum_{d|n}\mu(d)f(d) = \prod_{p|n} (1-f(p))


pf) 자명.


D18. Liouville's Function

n=i=1ωpieiλ(n):=(1)e1+eω n = \prod_{i=1}^{\omega} p_i^{e_i} \Rightarrow \lambda(n) := (-1)^{e_1 + \cdots e_{\omega}}


P18-1. λCM\lambda \in \mathbb{CM}

P18-2. dnλ(d)={1(n : square)0otherwise \sum_{d|n} \lambda(d) = \begin{cases} 1 & (\text{n : square}) \\ 0 & \text{otherwise} \end{cases}  

pf) λ(d)=λ(n/d)(n : square)\lambda(d) = -\lambda(n/d) \text{(n : square)}

λ(pkx)=λ(pekx)(e : odd) \lambda(p^k\cdot x) = -\lambda(p^{e-k}\cdot x) \text{(e : odd)} \ \blacksquare

P18-3. λ1(n)=μ(n) \lambda^{-1}(n) = |\mu(n)|

pf) λ1(n)=λ(n)μ(n)=μ(n) \lambda^{-1}(n) = \lambda(n)\mu(n) = |\mu(n)| \ \blacksquare


D19. Divisors Function

σk =uNk \sigma_k  = u \ast N^k

P19-1. σkM \sigma_k \in \mathbb{M}

P19-2. σk1= u1 Nk1=μ(μNk)=dnμ(d)μ(nd)dk \sigma_k^{-1} = \ u^{-1} \ast {N^k}^{-1} = \mu \ast (\mu \cdot N^k) = \sum_{d|n} \mu(d)\mu(\frac{n}{d}) d^k


다음 포스팅에서 CH2 마무리.