[Apostol 해석적 정수론] Chap 2. 1~11

2017. 8. 6. 22:17수학 이론/정수론

Apostol의 해석적 정수론을 공부해 보았다. 대부분 증명을 혼자 쓰다 보니 오류가 있을 수도...? 오류 제보 환영합니다.

Notation :

D : Definition

T : Thm.

C : Corollary

별 말 없으면 pp는 소수


D1. (Mobius Func.)

\( \mu(n) = \begin{cases} 1 \quad (n = 1) \\ 0 \quad (\exists \ p \ s.t. \ p^{2} | n) \\ {(-1)}^{\omega(n)} \quad (otherwise) \end{cases}\)

( ω(n)\omega(n) : nn의 서로 다른 소인수 개수)


T2.

dnμ(d)=I(n)=1n \sum_{d|n}{\mu(d)} = I(n) = \lfloor \frac{1}{n} \rfloor


pf)

n=1n=1 : 자명

n>1n>1 : dnμ(d)=pn(1+(1)+0+)=0 \sum_{d|n} {\mu(d)} = \prod_{p|n} (1+(-1)+0+\cdots ) = 0 임이 자명 \blacksquare


D3. (Euler Totient Func.)


\( \phi (n) = \sum_{k=1}^{n}' 1\)

\sum ' notation은 서로소인 값들만 더한다는 뜻.


T4.

dnϕ(d)=n \sum_{d|n}{\phi(d)} = n


pf)

Sn:={xn1xn} S_n := \{ \frac{x}{n} | 1 \le x \le n \}

Sn=n=dnϕ(d)  |S_n| = n = \sum_{d|n} \phi(d) \ \blacksquare


T5.

ϕ(n)=dnμ(d)nd \phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}


pf)

\( \phi(n) = \sum_{k=1}^{n} {I(gcd(n,k))} \\ =_{\text{by T2}}  \quad \sum_{k=1}^{n} \sum_{d | gcd(n,k)} \mu(d) \\ = \sum_{k=1}^{n} \sum_{d|n \wedge d|k} \mu(d) \\ = \sum_{g|n} \sum_{k=1}^{n/g} \mu(g) = \sum_{g|n} \mu(g) \cdot \frac{n}{g} \ \blacksquare \)


D6. (Dirichlet Multiplication)

fg:=dnf(d)g(nd) f \ast g := \sum_{d|n} f(d)g(\frac{n}{d})

ex) : ϕ=μN \phi = \mu \ast N (N(n):=n,Nk(n):=nkN(n) := n, N^{k}(n) := n^k)


C6-1. f(gh)=(fg)hf \ast (g \ast h) = (f \ast g) \ast h (\ast is associative.)


D7. (Dirichlet Inverse)

f1:=g s.t. fg=gf=I f^{-1} := g \ s.t. \ f \ast g = g \ast f = I


T8 .

f(1)0f1 is unique f(1) \neq 0 \Rightarrow f^{-1} \text{ is unique}


pf)

[Induction]

n=1 : f1(1)=1f(1)n=1 \ : \ f^{-1}(1) = \frac{1}{f(1)}


n>1 : (ff1)(n)=0recursion.n>1 \ : \ (f \ast f^{-1} ) (n) = 0 \rightarrow \text{recursion.} \blacksquare


D9. (uu-func.)

u(n):=1,u=N0u(n) :=1, \therefore u=N^0


C9-1.

\(\mu \ast u = I \\ \therefore u = {\mu}^{-1}\)


D10. (Mangoldt Func.)

Λ(n):={log(p)(n=pm)0(otherwise) \Lambda(n) := \begin{cases} log (p) & (n=p^m) \\ 0 & (otherwise) \end{cases}


T11. (Mobius Inversion Formula)

f(n)=dng(d)g(n)=dnμ(d)f(nd)f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})


pf) f=ugg=μf  f = u \ast g \Leftrightarrow g = \mu \ast f  \ \blacksquare


ex) log=ΛuΛ=logμ\text{log} = \Lambda \ast u \Rightarrow \Lambda = \text{log}\ast\mu