Keith Nicholson - Introduction to Abstract Algebra, Good Exercises
2018. 1. 11. 22:12ㆍ수학 이론/추상대수학
Keith의 책으로 현대대수를 공부하고 있는데, 연습문제 중에 괜찮은 개념을 담고 있거나 난도가 있는 문제들을 따로 정리해 두기로 한다.
CH 2.4. Cyclic Groups and Order of an element
24.
(a) is the only element of in a group . show that , where is the center of group .
(b) is the only element of in a group . What can you say about ?
35.
(a) Let are elements of a group , and let be and , respectively.
If , show that has an element , such that .
(b) Let be an abelian. And assume that has an element of maximal order .
Show that .
37.
Faro shuffle of a deck which contains cards can be represented by the permutation :
Let be a minimum integer such that , where is the identity permutation.
Express by terms about .
'수학 이론 > 추상대수학' 카테고리의 다른 글
Normal Subgroup 이야기 (4) - Butterfly Lemma (Zassenhaus Lemma) (0) | 2019.01.08 |
---|---|
Normal Subgroup 이야기 (3) - Solvable group (0) | 2019.01.08 |
Normal Subgroup 이야기 (2) - Canonical Map과 Isomorphism Theorems (0) | 2019.01.05 |
Normal subgroup 이야기 (1) (0) | 2019.01.04 |
Lang-ish proof on Lagrange's theorem (0) | 2019.01.03 |