Keith Nicholson - Introduction to Abstract Algebra, Good Exercises

2018. 1. 11. 22:12수학 이론/추상대수학

Keith의 책으로 현대대수를 공부하고 있는데, 연습문제 중에 괜찮은 개념을 담고 있거나 난도가 있는 문제들을 따로 정리해 두기로 한다.



CH 2.4. Cyclic Groups and Order of an element


24.

(a) hh is the only element of order 2\text{order 2} in a group GG. show that hZ(G)h \in Z(G), where Z(G)Z(G) is the center of group GG.


(b) kk is the only element of order 3\text{order 3} in a group GG. What can you say about kk?


35.

(a) Let a,ba,b are elements of a group GG, and let m,nm,n be ord(a)\text{ord}(a) and ord(b)\text{ord}(b), respectively. 

If ab=baab = ba, show that GG has an element cc, such that ord(c)=lcm(m,n)\text{ord}(c) = \text{lcm}(m,n).


(b) Let GG be an abelian. And assume that GG has an element of maximal order nn

Show that gG, gn=1\forall g \in G, \ g^n = 1.


37.

Faro shuffle of a deck which contains 2n2n cards can be represented by the permutation ϕ\phi

ϕ=(1234 2n1n+12n+22n) \phi = \begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & 2n \\ 1 & n+1 & 2 & n+2 & \cdots & 2n \end{pmatrix}


Let m1m \ge 1 be a minimum integer such that ι=ϕm\iota = \phi^{m}, where ι\iota is the identity permutation. 

Express mm by terms about nn.